

Jenga as a Performance Art: Computational Generation of Surprisingly Stable Structures

S

Kristine Zheng*, Isabella Yu* kxzheng@mit.edu, iyu@mit.edu

Massachusetts Institute of Technology

*denotes equal authorship

Abstract

- Surprisingly stable and intriguing art pieces are everywhere. What is the link behind instability and aesthetics?
- To study this, we a) develop a method to programmatically generate sculptures of varying heights and stabilities using an intuitive physics engine and b) design a survey using these sculptures to study the relationship between their stability and aesthetic value.
- We find that an intuitive physics engine based on the Bayesian theory of cognition accurately reflects human notions of stability, and that instability may contribute to a sculpture's visual appeal.

Background

- Previous studies from Fillinger [1] have argued that there are two patterns of instability: gravitational instability, which is related to perceptual inbalance and disliked by human participants, and dynamic stability which may imply movement and is generally liked by participants.
- Vision is suggested to be probabilistic since it infers plausible scenes from images with prior beliefs. An "intuitive physics engine" (IPE) from Vul [2] models human judgements in vision-based intuitive physics tasks using probabilistic simulations. The IPE approximates and simplifies physics' representations just as people tend to do for rapid decisions

Intuitive Physics Engine Implementation

Simplified block world: we create towers composed of N 1.5 by 0.5 by 0.3 blocks as inputs to the IPE.

Survey Design

Which tower is more stable?

Which tower is more aesthetic?

1 (Left) 2 3 4 5 6 7 (right)

We generated both "T" shape and randomly generated towers. Using an architecture preference backstory, we asked participants to assign a score from 1 to 7 to each their randomly assigned tower pairs, with 1 representing the left structure being the most stable or aesthetically pleasing and 7 representing the right structure being the most stable or aesthetically pleasing.

Results and Discussion

Building Sculptures with Intuitive Physics

Even in this simplified world, the function of sculptures \rightarrow stability is non-convex and not injective! Thus, we use Metropolis-Hastings to sample towers from this stability distribution.

Taller T-towers were more likely to collapse, aligning with the results of Battaglia [3] and human intuitions. In addition, our IPE calculates that towers of height 3 have similar fall rates, which suggests that humans may perceive a threshold height for total instability.

For computationally generated structures, the IPE's calculation of stability calculations significantly correlates with human perception of stability (r = 0.714, p = 0.05, n = 22), \rightarrow **IPE is effective at approximating**

- Instability is positively correlated with aesthetic appeal (r = 0.515, p = 0.05, n = 22).
- Our results suggest that this type of "inverse inverse rendering" is a strong model to study various applications of how humans perceive physical interactions and objects [3].

References	Acknowledgements
 [2] M.G. Fillinger, et al., "On the relation between perceived stability and aesthetic appreciation." Acta Psychologica, vol. 208, pp. 103082, July 2020. [3] E. Vul, et al., "One and done? optimal decisions from very few samples." Cognitive Science, vol. 38(4), pp. 599-637, Jan. 2014. [1] P.W. Battaglia, et al., "Simulation as an engine of physical scene understanding." Proceedings of the National Academy of Sciences, vol. 110(45), pp. 18327-32, Oct 2013. 	Thank you to Kartik Chandra for the initial project idea and valuable mentorship. We are also grateful for Professor Tenenbaum and 9.66 TAs for excellent guidance.