Simultaneous localization and motion planning
using belief space approaches

Isabella Yu
Massachusetts Institute of Technology
6.4212: Robotic Manipulation
Cambridge, United States
iyu@mit.edu

Abstract—Real-world scenarios often present robots with noisy
or limited sensor information. In these cases, robots may be
required to perform information-gathering actions to maximize
sensor information and accomplish their task. One approach to
solving these problems is belief space planning, or planning ac-
tions according to the probability distribution over the underlying
state of the system. This report details the implementation of
Platt’s paper “Efficient planning in non-Gaussian belief spaces
and its application to robot grasping,” in which the authors
present a belief space planning algorithm with fixed compu-
tational complexity that accounts for an arbitrary implemen-
tation of a Bayesian filter [2]. The algorithm is applied to a
robotic localization problem in simulation, where the robot must
simultaneously localize and move its end effector by localizing
with a wrist-mounted laser sensor. Although the implementation
succeeds at reaching the goal almost all the time, improvements
can be made in the laser beam model and the smoothness of
trajectories.

I. INTRODUCTION

Robots often use sensors to collect information about their
surroundings. However, sensors are not perfect; almost all
sensors output noisy observations. Thus, performing actions
that maximize the certainty or information content from sen-
sors is crucial for solving common robotics problems such as
SLAM and motion planning. In particular, sensor data is an
important aspect of robotic motion planning, which involves
both localizing the robot as well as reaching a goal state.
However, due to limited sensor information, motion planning
can be cast as a partially observable Markov Decision Process
(POMPD). Obtaining the optimal solution to a POMPD is
intractable [3], so approximate algorithms are often practically
necessary. One way of solving POMPD'’s is to use belief space
planning, a class of planning algorithms that direct the robot
to take information-gathering actions to minimize uncertainty
over the robot’s state. Thus, belief space planning can max-
imize the information gained out of noisy sensor data. Such
information-gathering actions can be essential for planning in
scenarios with dynamic environments, from robotic picking to
exploration of caves.

II. RELATED WORK

Traditional approaches to planning include Extended
Kalman Filter (EKF)-based methods, which are commonly
used for nonlinear state estimation. However, these methods
are not optimal if the observation model is nonlinear because

of the filter’s inherent linearization. In addition, process and
measurement noise are assumed to be Gaussian, leading to
underperformance in non-Gaussian belief spaces [1]. For ex-
ample, a robot’s estimated position in a 2D environment with
obstacles may not be represented as Gaussian or a sum of
Gaussians because of the irregularity of the obstacles.

Similarly, belief space planning algorithms prior to Platt’s,
such as [3], assume Bayes filtering will be performed using
a Gaussian density function. Furthermore, Platt states that
“extending an approach like [3]’s to non-Gaussian distributions
quickly results in an intractable planning problem because of
the high dimensionality of typical non-Gaussian parametriza-
tions.”

Platt’s paper proposes an approach to planning in high-
dimensional belief spaces that tracks belief state using a
Bayesian filter, but creates plans using a set number of
samples from the belief space [2]. Thus, the algorithm has a
fixed computational complexity dependent on only the sample
size, not on the dimension of the underlying belief space
representation.

III. METHODS
A. Problem statement

The objective of the problem presented in Platt’s paper is to
estimate the state of a robotic system while reaching the goal
state. The robot is equipped with a noisy laser sensor and is
assumed to have no process noise.

Thus, the problem can be modeled as a discrete time system.
The state of the system evolves via the deterministic dynamics
function

T = f(@e,up) (D

where z;,x4+1 € R are the states at times ¢ and ¢ + 1,
respectively, and u; € R is the input to the system.

The laser observations at time ¢, z; can be modeled as a
noisy function of the state,

Zt = h(iLt) —+ V¢ (2)

where h(x;) gives the true depth reading at state x;, and
v¢ ~ Normal(0, Q) is zero-mean Gaussian process noise with
variance Q).



The robot starts at ¢ = 0 with no prior over its state, i.e.
with a uniform distribution over the possible states. By taking
actions and observing the environment at each timestep, the
robot can change this distribution, or the belief space b, to
concentrate at the true state via a Bayesian filtering algorithm
like a histogram filter.

The objective of belief space planning is to achieve task
objectives with a given minimum probability. Specifically, we
want to reach a belief state, b, such that

O(r,z4,0) = / (x4 x4;0) > w 3)
zEB, ()

where B, (r) = x € R", 272 < r? denotes the r-ball in R",
for some r > 0, x4, € R™ denotes the goal state, and w denotes
the minimum probability of success.

B. Algorithm

The overarching goal of the algorithm is to maximize the
sensor information gathered at each time step of the robot’s tra-
jectory in a fixed horizon T'. To accomplish this, the algorithm
maximizes the difference between the observations (generated
by a sequence of velocity commands u = (uq, ..., ur)) starting
from the most likely state (z = argmax(w(z;b;)) to those
of k — 1 randomly sampled other states (z! ~ (m(z;b;),4 €
{1,...,k}). Calculating ©(r, x4, b) at the end of the trajecotry
either proves that z is the true state or disproves it, and in the
latter case, the algorithm selects a new = and k — 1 sampled
states to compare, ultimately converging to the true state.

The full mathematical details are omitted for brevity and
can be found in Platt’s paper, but this essentially amounts to
solving the optimization problem below:

Problem 1.
1 F T—1
Minimize Z Z(uﬂf)Q +a Z u? 4)
i=1 =1
subject to z}, = f(z},us),i € {1,...,k} 5)
subject to w}, | = wie_¢(mi7mi)i e{l,..,k} (6)
subject to 7% = ', w} = 1,i € {1,...,k} (7

subject to xZT =z, ®)

where w} defines the partial cost of sample 4, i.e. how far its
observation is from Z’s (w} includes terms that minimize the
Frobenius norm of ahﬁ”l) , the derivative of sample ¢’s observa-
tion with respect to x*, to accomplish this). The quadratic cost
on uy leads the system to favor shorter paths/smaller velocities.
One can obtain the direct transcription solution, the desired
trajectories uy.7, by solving the optimization problem via SQP.
Platt denotes this as uj.; = DIRTRAN(z zg,T).

The CREATEPLAN algorithm (Algorithm 2) generates tra-
jectories with or without the goal constraint. It first attemtps
to call DirTran with the goal constraint. If the generated
trajectory results in too uncertain of a state estimate (line

3), DIRTRAN is called without the goal state to allow for a
less constrained exploration of the environment to encourage
performing information-gathering actions. In this way, the
robot is always gaining information, and its estimated state
eventually converges to its true state.

After generating the trajectories with CREATEPLAN, the
robot performs each action in u;.7 sequentially while updating
its belief state at each timestep, b;, using a Bayesian filter
G(ug, x4, h(z¢)—a histogram filter in this implementation, as
shown in Algorithm 1. The robot continues generating tra-
jectories until O(r,z,,b) = fmeBn(r) m(x + 24;0) > w, ie.
the estimated state is within some radius of the true state
with probability w. However, replanning occurs if the KL
divergence of the belief state is too high, i.e. the belief state
deviates too much from the trajectory (line 9). The algorithms
are outlined:

Input : initial belief state, b, goal state, x,, planning horizon, 7', and belief-state update, G.
1 while ©(b,7,x,) < w do
2 x! = argmax epn 7(x; b);
3 Vi € 2,k],x' ~ m(x;b) : w(x';b) > @;
4 bir,upr—1 = CreatePlan(b,x!,...,x*,x,, T);
5 by =b;
6 fort < 1to7 —1do
7 execute action u,, perceive observation z;41;
8 b1 = G(br,ur,z41);

9 if Dy [w(x;bry1),@(x;bir1)] > 6 and J(x!,... . x*up, 1) < 1—p then
10 | break

11 end

12 end

13 b= br+1§

14 end

Algorithm 1: Belief-space re-planning algorithm

Input : initial belief state, b, sample set, x! yeen ,)/C, goal state, x,, and time horizon, T'.
Output: nominal trajectory, b1.r and uy.7_;

1 upr—i =DirTran(x!,...,.x*x,,T);

2 by =b;Vt€[1:T —1], bry1 = G(br,us, h(x}));

3 if ©(b,r,x;) < w then

4 Uy = DirTran(xl,...,xk,T);

5 by =b;Vt€[1:T —1], bir1 = G(br,us,h(x}));

6 end

Algorithm 2: CREATEPLAN procedure

C. Experimental setup

This section delves into the implementation details of the
algorithms above that Platt’s paper did not go in depth into.
In particular, this section will cover how the algorithm was
modified to fit Drake’s simulation and optimization APIs, as
well as the implementation of the histogram filter.

Manipulation setup: Fig. 1 shows a screenshot of the
simulation setup in Drake’s MeshCat visualizer. The robot
used is a 7-link iiwa arm whose base is welded to the world
origin. Its initial position is the one shown in the figure. The
end effector is a WSG 50 gripper. An Intel RealSense D415
depth camera is attached to the top of the end effector, and
it is modified to act as a noisy laser beam; it gives only the
center pixel of the depth image with zero-mean Gaussian noise
with standard deviation 0.025. Its The end effector faces two
evenly placed boxes, whose poses are perfectly known. The
end effector is constrained to move in the y-axis from its



inital position, and not beyond the outer ends of the boxes.
Notice that the gap between them allows the laser to “see”
into the wall behind the boxes, giving the histogram filter
a key feature for localization. The system uses differential
inverse kinematics to execute actions. The state x is the robot’s
position along the y-axis, h(z) is the laser sensor reading at
state x, and f(x,u) = x4 + us * 0 where § is the simulation
timestep. Ultimately, the algorithm does not run in Drake’s
simulation yet, and the immediate next step would be to run the
trajectories generated by the belief space planning algorithm
on the iiwa by sending the y positions at each time step to the
input of the differential IK controller.

l l

Fig. 1: Simulation setup in Drake’s Meshcat, labeled with axes
and object positions.

Using Drake’s MathematicalProgram and symbolic
differentiation: The implementation of DirTran using Drake’s
MathematicalProgram was straightforward with some
exceptions. Notably, since Problem 1 requires the calculation
of the derivative of the observation h(x) with respect to state x,
and x is a decision variable in the MathematicalProgram,
h(x) must be a continuous symbolic function. However, in the
manipulation setup above, h(x) is discontinuous because of
the sharp edges of the boxes, as shown in Fig. 2. Because of
this, it was necessary to approximate h(z) as

h(z) = %arc'tan(—sm(Zﬂfx + i)
T d
where A = 0.1 (the amplitude), d = 0.001 (the steepness

of the wave), and f = 5 (the frequency). This makes it so
Oh(z")

7

)+0.15 (9

that Drake can calculate via autodifferentiation while
solving the problem.

The parameters that yielded the least solve failures from the
DirTran were k = 15, T'= 10, and a = 0.0085.

In addition, the decision variables uq. are initialized with
random values, which was necessary for the solver to generate
a solution.

Histogram filter implementation: The system uses a his-
togram filter to update its state according to its dynamics and
observations. The histogram filter algorithm is outlined to the
right.

h(x)

0.254

0.204

0.15 -

0.10 4

0.051

h(x) {distance from environment to end effector)

0.00

T T T
—0.05 0.00 0.05 0.10
% (end effector position)

T
—-0.10

hix)

0.254 ‘\

0.204

0.15 -

0.10 -

0.05 4

h(x) (distance from environment to end effector)

0.00

T T T
-0.05 0.00 0.05 0.10
x (end effector position)

T
-0.10

Fig. 2: h(z), the true observation function, and h(z), the
continuous approximation. Note that the robot is constrained
to move between the outer edges of the boxes in the y-axis, in
this case between -0.125 m and 0.125 m, so values of %
outside the range are set to 0.

The first line of the for loop updates the belief state based
on the robot’s action wu;. In this system with no process
noise, this is simply p(X; = zg|ug, Xi—1 = 2;)pi e, where
x; is the previous step. The second line updates the belief
state based on sensor observations. The sensor observation
contains Gaussian noise, Normal(0, o), so p(z|X: = i) =
NormalCDF(Z,ip, 2¢,0) — NormalCDF(2,4, 2¢, ), Where
Tmin and .4, are the upper and lower bin boundaries of
the bin that x is in.

IV. RESULTS

Representative examples of the results of the planning
algorithm are shown in Figs. 3-4.

Fig. 3a shows a trajectory generated by the planner with
a starting state of x = —0.0125. Note that the time axis on
the graph represents the total time elapsed, not the planning
horizon, as the planner is called multiple times in the while



Algorithm 1: Histogram Filter

Result: py, ;, the belief state over k state bins at time ¢
initialization;
for all k do
Dkt = ZiP(Xt = wk|ut7Xt71 = xi)pi,ﬁ
Pit = Np(2e| Xy = 1) Pt
end

loop. Fig. 3b shows the change in probability distributions over
the course of the algorithm, with transparent lines representing
older distributions. Fig. 4a and 4b show the same plots but for
a starting state of x = —0.125-the edge of the box.

End effector trajectory (horizon T=10) Belief states over time (horizon T=10)

° 20 ) 60 80 ~010 —0.05 0.00 005 0lo
time end effector position along y axis

(@ (b)
Fig. 3: 3a) an example of an information gathering trajectory
starting from x = —0.0125. 3b) belief state over time. Notice

that more recent belief states spike at around x = 0.0, the goal
state, indicating certainty of reaching the goal.

End effector trajectory (horizon T=10) Belief states over time (horizon T=10)

A

{IAY
\
\

T
]

-
vV

(@ (b)
Fig. 4: 4a) an example of an information gathering trajectory
starting from x = —0.125. 4b) belief state over time. More

recent belief states spike at around = = 0.0, the goal state, but
are not as sharp as in the previous figure.

It is unclear why the optimization outputs near-zero veloc-
ities in the first few iterations of the algorithm, but it does
seem to be a pattern. However, the latter parts of trajectories
are representative of information gathering actions. In Fig 3a.,
even though the robot starts near the goal, the hypothesis state
z sampled is likely not the goal state, since few actions were
taken in the first iterations, leading to repetitive observations.
Thus, the robot generates a trajectory to gather information,
leading it to observe different features of the environment and
thus localize itself. After localizing, it returns to the gap.

V. DISCUSSION

The robot successfully reached the goal state, i.e. the middle
of the gap, about 96% of the time (the execution was a success
if optimization did not fail and x1 was within 2% of the goal
state). Most of the successes were concentrated near the goal
state (see Fig. 5). This indicates that although the algorithm
was able to reach the goal location most of the time, it was
more reliable when it started close to the goal state. One reason
not reaching the goal state may be because the histogram filter
is too “certain” of its location when it is at the border. The
sensor update rule py ; = np(2|X; = =k )Pk, in the histogram
filter returns a small value of py , if Py ., the previous state,
is small, even when p(z;|X; = xy), or the certainty of an
observation, is large; when the sensor starts out observing the
box instead of the gap, the histogram filter indicates that the
probability that the robot is in the gap is near zero. The robot
must stay in the gap for an extended period of time This can
be alleviated by increasing the sensor’s noise variance, but
the tradeoff is that the algorithm fails to localize due to high
noise. Another way to add noise to decrease the histogram’s
certainty would be to add process noise. This would both not
affect the sensor noise and realistically model how a physical
robot moves.

Success rate of starting end effector positions with goal position of x = 0.

0.99

0.98

0.97

0.96 1

success rate

0.95 A

0.94 1

0.93

T T T T
—0.05 0.00 0.05 0.10
starting end effector position

—0:10
Fig. 5: The rate of success starting from each possible state.

In addition, even though the optimization cost penalized
large velocity commands, Figs. 3-4 show that the robot is still
incentivized to move large distances in one timestep to get to
the goal. This would be undesireable on a real robot due to
the large motor torques that sudden accelerations can induce.
I tried diminishing this effect by setting bounding constraints
u1.7, but that caused the optimization to always fail. This may
be due to a bug in the optimization code. It may also be caused
by poor initialization, as random initialization may not lead to
a feasible solution at times.

Though runtime was not explicitly analyzed, qualitatively,
the algorithm ran almost instantaneously unless an optimiza-
tion failure occurred. Increasing the sample size from the



default £ = 15 did not seem to improve performance, but
slowed down the optimizer due to the added number of
decision variables.

VI. CONCLUSION

In this project, I implemented Platt’s sampling-based belief
space planning planning algorithm to simulaneously localize
and move the end effector of a robot with a laser sensor. Over-
all, the algorithm successfully generated information gathering
trajectories. However, improvements to lessen the optimization
failure rate and decrease the maximum end effector velocities
delivered by the optimization problem would be crucial to
allow the system to run reliably on a real robot.

To make the algorithm more applicable to real-world sce-
narios, I could model the process dynamics with noise, which
would affect the probability distributions over the robot’s state
calculated by the histogram filter. In addition, I modeled the
laser sensor with Gaussian noise, but physical laser sensors
suffer from occlusions (short returns), missed detections (re-
turning the max depth), and random measurements as well.
Thus, a more realistic model of the laser sensor would be
Drake’s BeamModel, which takes into account these additional
problems.

Comparing this planning algorithm with others such as
EKF-based approaches could lead to insights on how the
algorithm’s behavior differs from other approaches, as well
as establish a baseline for localization performance.

To expand upon my work, the next step would be to
simulate the generated trajectories in Drake. After this, I could
implement the simultaneous localization and grapsing (SLAG)
algorithm discussed in Platt’s paper. The SLAG algorithm
localizes the 6-D position of two boxes with a end effector-
mounted laser sensor as opposed to the 1-D position of the
end effector as implemented in this paper, and is an illustrative
example of belief space planning for industrial applications.

REFERENCES

[1] Courses, E.; Surveys, T. (2006). Sigma-Point Filters: An Overview
with Applications to Integrated Navigation and Vision Assisted Control.
Nonlinear Statistical Signal Processing Workshop, 2006 IEEE. pp.
201-202

[2] Platt, R., Kaelbling, L., Lozano-Perez, T., & Tedrake, R. (2017). Efficient
planning in non-gaussian belief spaces and its application to robot
grasping. In Robotics Research (pp. 253-269). Springer, Cham.

[3] PlattJr, R., Tedrake, R., Kaelbling, L., & Lozano-Perez, T. (2010). Belief
space planning assuming maximum likelihood observations.

[4] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press.



